готовые домашние задания, гдз по алгебре, геометрии, физике, химии для 7, 8, 9, 10, 11 класса (решебники)
Поиск по сайту
 
Мы Вконтакте и Twitter ›› Карта сайта

гдз по алгебре, геометрии, физике, химии, русскому языку, математике
учебные материалы по школьным предметам книги статьи
переводчик


  

ВНИМАНИЕ! Это раздел УЧЕБНИКОВ, раздел решебников в другом месте.

[ Все учебники ] [ Букварь ] [ Математика (1-6 класс) ] [ Алгебра ] « Геометрия » [ Английский язык ] [ Биология ] [ Физика ] [ Химия ] [ Информатика ] [ География ] [ История средних веков ] [ История Беларуси ] [ Русский язык ] [ Украинский язык ] [ Белорусский язык ] [ Русская литература ] [ Белорусская литература ] [ Украинская литература ] [ Основы здоровья ] [ Зарубежная литература ] [ Природоведение ] [ Человек, Общество, Государство ] [ Другие учебники ]

7 класс - 8 класс - 9 класс - 10 класс - 11 класс

Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009

Геометрия, 10—11 классы (Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.) 2009

Страница № 135.

Учебник: Геометрия. 10—11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 18-е изд. — М. : Просвещение, 2009. — 255 с.: ил.

Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, «135», 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256


Страница учебника

OCR-версия страницы из учебника (текст страницы, которая находится выше):

546 Один цилиндр получен вращением прямоугольника ABCD вокруг прямой АВ, а другой цилиндр — вращением этого же прямоугольника вокруг прямой ВС. а) Докажите, что площади боковых поверхностей этих цилиндров равны, б) Найдите отношение площадей полных поверхностей этих цилиндров, если АВ = а, ВС = Ъ.

Конус

€ : ТЬ.;нятИ'' -синуса

Рассмотрим окружность L с центром О и прямую ОР, перпендикулярную к плоскости а этой окружности. Через точку Р и каждую точку окружности проведем прямую. Поверхность, образованная этими прямыми, называется конической поверхностью (рис. 148), а сами прямые — образующими конической поверхности. Точка Р называется вершиной, а прямая ОР — осью конической поверхности.

Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом (рис. 149). Круг называется основанием конуса, вершина конической поверхности — вершиной конуса, отрезки образующих, заключенные между вершиной и основанием, — образующими конуса, а образованная ими часть конической поверхности — боковой поверхностью конуса. Ось конической поверхности называется осью конуса, а ее отрезок, заключенный между вершиной и основанием, — высотой конуса. Отметим, что все образующие конуса равны друг другу (объясните почему).

Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. На рисунке 150 изображен конус, полученный вращением прямоугольного треугольника ABC вокруг катета АВ. При этом боковая поверхность конуса образуется вращением гипотенузы АС, а основание — вращением катета ВС,

Рассмотрим сечение конуса различными плоскостями. Если секущая плоскость проходит через ось конуса (рис. 151), то сечение представляет собой равнобедренный треугольник, основание которого — диаметр основания конуса, а боковые стороны — образующие конуса. Это сечение называется осевым.

Рис. 148

Рис. 149

ось конуса

вершина

конуса

образующие конуса

боковая

поверхность

конуса

основание

конуса


Страницы учебника: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, «135», 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256



Все учебники по геометрии:







 
гдз по алгебре, сочинения по литературе, биографии писателей Copyright © 2006-2016
[copyright] - red [гав] slovo.ws